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Abstract

A quantitative and practical Bayesian framework is de-

scribed for learning of mappings in feedforward networks.

The framework makes possible: (1) objective comparisons

between solutions using alternative network architectures;

(2) objective stopping rules for deletion of weights; (3) ob-

jective choice of magnitude and type of weight decay terms

or additive regularisers (for penalising large weights, etc.);

(4) a measure of the e�ective number of well{determined

parameters in a model; (5) quanti�ed estimates of the er-

ror bars on network parameters and on network output; (6)

objective comparisons with alternative learning and inter-

polation models such as splines and radial basis functions.

The Bayesian `evidence' automatically embodies `Occam's

razor,' penalising over{exible and over{complex architec-

tures. The Bayesian approach helps detect poor underlying

assumptions in learning models. For learning models well{

matched to a problem, a good correlation between general-

isation ability and the Bayesian evidence is obtained.

Prerequisite

This paper makes use of the Bayesian framework for regular-

isation and model comparison described in the companion

paper `Bayesian interpolation' [14]. This framework is due

to Gull and Skilling [5].

1 The gaps in backprop

There are many knobs on the black box of `backprop' (learn-

ing by back{propagation of errors [17]). Generally these

knobs are set by rules of thumb, trial and error, and the

use of reserved data to test generalisation ability (or more

sophisticated cross{validation). The knobs fall into two

classes: (1) parameters which change the e�ective learning

model, for example, number of hidden units, and weight de-

cay terms; and (2) parameters concerned with function op-

timisation technique, for example, `momentum' terms. This

paper is concerned with making objective the choice of the

parameters in the �rst class, and with ranking alternative

solutions to a learning problem. Bayesian techniques will

be described which are both theoretically well{founded and

practically implementable.

Let us review the basic framework for learning in net-

works, emphasising the points at which objective techniques

are needed. The training set for the mapping to be learned

is a set of input{target pairs D = fx

m

; t

m

g, where m is a

label running over the pairs. A neural network architecture

A is invented, consisting of a speci�cation of the number

of layers, the number of units in each layer, the type of

activation function performed by each unit, and the avail-

able connections between the units. If a set of values w

is assigned to the connections in the network, the network

de�nes a mapping y(xjw;A) from the input activities x to

the output activities y. The distance of this mapping to the

training set is measured by some error function; for example

the error for the entire data set is commonly taken to be

E

D

(D jw;A) =

X

m

1

2

(y(x

m

jw;A)� t

m

)

2

(1)

The task of `learning' is to �nd a set of connections w which

gives a mapping which �ts the training set well, i.e. has small

error E

D

; it is also hoped that the learned connections will

`generalise' well to new examples. Plain backpropagation

learns by performing gradient descent on E

D

in w{space.

Modi�cations include the addition of a `momentum' term,

and the inclusion of noise in the descent process. More ef-

�cient optimisation techniques may also be used, such as

conjugate gradients or variable metric methods. This pa-

per will not discuss computational modi�cations concerned

only with speeding the optimisation. It will address however

those modi�cations to the plain backprop algorithm which

implicitly or explicitly modify the objective function, with

decay terms or regularisers.

It is moderately common for extra regularising terms

E

W

(w) to be added to E; for example terms which penalise

large weights may be introduced, in the hope of achieving a

`smoother' mapping [7, 9, 18]. Some of the `hints' in [2] also

fall into the category of additive weight{dependent energies.
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A sample weight energy term is:

E

W

(wjA) =

X

i

1

2

w

2

i

(2)

The weight energy may be implicit, for example, `weight

decay' (subtraction of a multiple of w in the weight change

rule) corresponds to the energy in (2). Gradient{based op-

timisation is then used to minimise the combined function:

M = �E

W

(wjA) + �E

D

(D jw;A) (3)

where � and � are `black box' parameters. The constant

� should not be confused with the `momentum' parameter

sometimes introduced into backprop; in the present context

� is a decay rate or regularising constant.

What is lacking

The above procedures include a host of free parameters such

as the choice of neural network architecture, and of the reg-

ularising constant �. There are not yet established ways of

objectively setting these parameters, though there are many

rules of thumb (see [9] for examples).

One popular way of comparing networks trained with dif-

ferent parameter values is to assess their performance by

measuring the error on an unseen test set or by similar

cross{validation techniques. However the utility of these

techniques in determining values for the parameters � and

� or for comparing alternative network solutions, etc., is

limited because a large test set may be needed to reduce

the signal to noise ratio in the test energy. Furthermore if

there are several parameters like � and �, it is out of the

question to repeat the learning with all possible values of

these parameters so as to �nd the best values by using a

test set. Such parameters must be optimised on line.

It is therefore interesting to study objective criteria for

setting free parameters and comparing alternative solutions

which depend only on the data set used for the training.

Such criteria will prove especially important in applications

where the total amount of data is limited, so that one

doesn't want to sacri�ce good data for use as a test set.

This paper will describe practical Bayesian methods for

�lling the following holes in the neural network framework

just described:

1. Objective criteria for comparing alternative

neural network solutions, in particular with dif-

ferent architectures A.

Given a single architecture A, there may be more than

one minimum of the objective function M . If there is

a large disparity in M between the minima then it is

plausible to choose the solution with smallest M . But

where the di�erence is not so great it is desirable to be

able to assign an objective preference to the alterna-

tives.

It is also desirable to be able to assign preferences to

neural network solutions using di�erent numbers of hid-

den units, and di�erent activation functions. Here there

is an `Occam's razor' problem: the more free parame-

ters a model has, the smaller the data error E

D

it can

achieve. So we cannot simply choose the architecture

with smallest data error.

2. Objective criteria for setting the decay rate �.

As in the choice of A above, there is an `Occam's razor'

problem: a small value of � in equation (3) allows the

weights to become large and over�t the noise in the

data. This leads to a small value of the data error E

D

(and a small value of M), so we cannot base our choice

of � only on E

D

orM . The Bayesian solution presented

here can be implemented on{line, i.e. it is not necessary

to do multiple learning runs with di�erent values of �

in order to �nd the best.

3. Objective choice of regularising function E

W

.

4. Objective criteria for choosing between a neural

network solution and a solution using a di�er-

ent learning or interpolation model, for example,

splines or radial basis functions.

The probability connection

Connections between probabilistic inference and neural net-

works have been discussed in [3, 8, 13, 21]. Tishby et. al. [21]

introduced a probabilistic view of learning which is an im-

portant step towards solving the problems listed above. The

idea is to force a probabilistic interpretation onto the neural

network technique so as to be able to make objective state-

ments. This interpretation does not involve the addition of

any new arbitrary functions or parameters, but it involves

assigning a meaning to the functions and parameters that

are already used.

My work is based on the same probabilistic framework,

and extends it using concepts and techniques adapted from

Gull and Skilling's Bayesian image reconstruction methods

[5]. This paper also adopts a shift in emphasis from Tishby

et. al.'s paper: their work concentrated on predicting the

average generalisation ability of a network trained on a task

drawn from a known prior ensemble of tasks. In this paper

the emphasis will be on quantifying the plausibility of al-

ternative solutions to an interpolation or classi�cation task;

that task is de�ned by a single data set produced by the real

world, and we do not know the prior ensemble from which

the task comes.

Let us now review the probabilistic interpretation of net-

work learning.

Likelihood. A network with speci�ed architectureA and

connections w is viewed as making predictions about the

target outputs as a function of input x in accordance with

the probability distribution:

P (t

m

jx

m

;w; �;A) =

exp��E(t

m

jx

m

;w;A)

Z

m

(�)

; (4)
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where Z

m

(�) =

R

dt exp��E. E is the error for a single

datum, and � is a measure of the presumed noise included in

t. If E is the quadratic error function then this corresponds

to the assumption that t includes additive gaussian noise

with variance �

2

�

= 1=�.

Prior. A prior probability is assigned to alternative net-

work connection strengths w, written in the form:

P (wj�;A;R) =

exp��E

W

(wjA)

Z

W

(�)

(5)

where Z

W

=

R

d

k

w exp��E

W

. Here � is a measure of

the characteristic expected connection magnitude. If E

W

is

quadratic as speci�ed in equation (2) then weights are ex-

pected to come from a gaussian with zero mean and variance

�

2

W

= 1=�. Alternative `regularisers' R (each using a di�er-

ent energy functionE

W

) implicitly correspond to alternative

hypotheses about the statistics of the environment.

The posterior probability of the network connections w is

then:

P (wjD;�; �;A;R) =

exp�(�E

W

+ �E

D

)

Z

M

(�; �)

(6)

where Z

M

(�; �) =

R

d

k

w exp�(�E

W

+ �E

D

). Notice that

the exponent in this expression is the same as the objective

function M de�ned in (3).

So under this framework, minimisation of M = �E

W

+

�E

D

is identical to �nding the (locally) maximum a poste-

riori parameters w

MP

; minimisation of E

D

by backpropaga-

tion is identical to �nding the maximum likelihood param-

eters w

ML

.

Thus an interpretation has been given to backpropaga-

tion's energy functions E

D

and E

W

, and to the parameters

� and �.

This framework o�ers some partial enhancements for

backprop methods: The work of Levin et. al. [12] makes

it possible to predict the average generalisation ability of

neural networks trained on one of a de�ned class of prob-

lems. However, it is not clear whether this will lead to

a practical technique for choosing between alternative net-

work architectures for real data sets.

Le Cun et. al. have demonstrated how to estimate the

`saliency' of a weight, which is the change in M when the

weight is deleted [10]. They have used this measure success-

fully to simplify large neural networks. However no stopping

rule for weight deletion was o�ered other than measuring

performance on a test set.

Also Denker and Le Cun demonstrated how the Hessian

of M can be used to assign error bars to the parameters

of a network and to its outputs [4]. However, these error

bars can only be quanti�ed once � is quanti�ed, and how to

do this without prior knowledge or extra data has not been

demonstrated. In fact � can be estimated from the data, as

has been reviewed in [14].

2 Review of Bayesian regularisa-

tion and model comparison

In the companion paper [14] it was demonstrated how the

control parameters � and � are assigned by Bayes, and how

alternative interpolation models can be compared. It was

noted there that it is not satisfactory to optimise � and �

by �nding the joint maximum likelihood value of w; �; �;

the likelihood has a skew peak whose maximum is not lo-

cated at the most probable values of the control parameters.

The companion paper reviewed how the Bayesian choice of

� and � is neatly expressed in terms of a measure of the

number of well{determined parameters in a model, . How-

ever that paper assumed that M (w) only has one signi�-

cant minimum which was well approximated as quadratic.

(All the interpolation models discussed in [14] can be inter-

preted as two{layer networks with a �xed non{linear �rst

layer.) In this section I briey review the Bayesian frame-

work, retaining that assumption. The following section will

then discuss how the framework can be modi�ed to handle

neural networks, where the landscape of M(w) is certainly

not quadratic.

Determination of � and �

By Bayes rule, the posterior probability for these parameters

is:

P (�; � jD;A;R) =

P (Dj�; �;A;R)P (�; �)

P (DjA;R)

(7)

Now if we assign a uniform prior to (�; �), the quantity of

interest for assigning preferences to (�; �) is the �rst term

on the right hand side, the evidence for �; �, which can be

written as

1

P (Dj�; �;A;R) =

Z

M

(�; �)

Z

W

(�)Z

D

(�)

(8)

where Z

M

and Z

W

were de�ned earlier and Z

D

=

R

d

N

De

��E

D

.

Let us use the simple quadratic energy functions de�ned

in equations (1,2). This makes the analysis easier, but more

complex cases can still in principle be handled by the same

approach. Let the number of degrees of freedom in the

data set, i.e. the number of output units times the num-

ber of data pairs, be N , and let the number of free pa-

rameters, i.e. the dimension of w, be k. Then we can

immediately evaluate the gaussian integrals Z

D

and Z

W

:

Z

D

= (2�=�)

N=2

, and Z

W

= (2�=�)

k=2

. Now we want

to �nd Z

M

(�; �) =

R

d

k

w exp�M (w; �; �). Supposing for

now that M has a single minimum as a function of w,

at w

MP

, and assuming we can locally approximate M as

quadratic there, the integral Z

M

is approximated by:

Z

M

' e

�M(w

MP

)

(2�)

k=2

det

�

1

2

A (9)

1

The same notation, and the same abuses thereof, will be used as

in [14].
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where A = rrM is the Hessian of M evaluated at w

MP

.

The maximum of P (Dj�; �;A;R) has the following useful

properties:

�

2

W

� 2�E

W

=  (10)

�

2

D

� 2�E

D

= N �  (11)

where  is the e�ective number of parameters determined

by the data,

 =

k

X

a=1

�

a

�

a

+ �

(12)

where �

a

are the eigenvalues of the quadratic form �E

D

in

the natural basis of E

W

.

Comparison of di�erent models

To rank alternative architectures and penalty functions E

W

in the light of the data, we simply evaluate the evidence,

P(D jA;R), which appeared as the normalising constant in

(7). Integrating the evidence for (�; �), we have:

P (DjA;R) =

Z

P (Dj�;�;A;R)P (�; �)d� d� (13)

The evidence is the Bayesian's transportable criterion for

model comparison.

3 Adapting the framework

For neural networks, M(w) is not quadratic. Indeed it is

well known that M typically has many local minima. And

if the network has a symmetry under permutation of its pa-

rameters, then we know that M(w) must share that sym-

metry, so that every single minimum belongs to a family of

symmetric minima ofM . For example if there are H hidden

units then each non{degenerate minimum is in a family of

size g = H! 2

H

. Now it may be the case that the signif-

icant minima of M are locally quadratic, so we might be

able to evaluate Z

M

by evaluating (9) at each signi�cant

minimum and adding up the Z

M

s; but the number of those

minima is unknown, and this approach to evaluating Z

M

would seem dubious. Luckily however, we do not actually

want to evaluate Z

M

. Referring to the previous section, we

would need to evaluate Z

M

in order to assign a posterior

probability over �; �, and to evaluate the evidence for alter-

native architectures and regularisers. This is not quite what

we wish to do: when we use a neural network to perform a

mapping, we typically only implement one neural network

at a time, and this network will have its parameters set to

a particular solution of the learning problem. Therefore the

alternatives we wish to rank are the di�erent solutions of the

learning problem, i.e. the di�erent minima ofM . We would

only want a posterior probability over the number of hidden

units if we were somehow able to simultaneously implement

the entire posterior ensemble of networks for one number of

hidden units. Similarly, we do not want the posterior over

�; � for the entire posterior ensemble; rather, we wish to

allow each solution (each minimum ofM ) to choose its own

optimal value for these parameters.

Having adopted this slight shift in objective, it turns out

that to set � and � and to compare alternative solutions

to a learning problem, the integral we now need to evaluate

is a local version of Z

M

. Assume that the posterior prob-

ability consists of many islands in parameter space centred

on minima of M . We wish to evaluate how much poste-

rior probability mass is in each of these islands. Consider a

minimum located at w

�

, and de�ne a solution S

w

�

as the

ensemble of networks in the neighbourhood of w

�

, and all

symmetric permutations of that ensemble. Let us evaluate

the posterior probability for alternative solutions S

w

�

, and

the parameters � and �:

P (S

w

�

; �; �;A;RjD) / g

Z

�

M

(w

�

; �; �)

Z

W

(�)Z

D

(�)

P (�; �)P (A;R)

(14)

where g is the appropriate permutation factor, and

Z

�

M

(w

�

; �; �) =

R

S

w

�

d

k

w exp�M(w; �; �), where the in-

tegral is performed only over the neighbourhood of the min-

imum at w

�

. I will refer to the quantity g

Z

�

M

(w

�

;�;�)

Z

W

(�)Z

D

(�)

as the

evidence for �; �; S

w

�

. � and � will be chosen to maximise

this evidence. Then the quantity we want to evaluate to

compare alternative solutions is the evidence

2

for S

w

�

,

P (D;S

w

�

jA;R) =

Z

g

Z

�

M

(w

�

; �; �)

Z

W

(�)Z

D

(�)

P (�; �) d� d�: (15)

I propose that the gaussian approximation for Z

�

M

may meet

our needs:

Z

�

M

' e

�M(w

�

)

(2�)

k=2

det

�

1

2

A (16)

where A = rrM is the Hessian of M evaluated at w

�

. For

most � and � this approximation is probably unacceptable;

however we only need it to be accurate for the small range

of � and � close to their most probable value. The regime in

which this approximation will de�nitely break down is when

the number of constraints, N , is small relative to the num-

ber of free parameters, k. For large N=k the central limit

theorem encourages us to use the gaussian approximation.

It is a matter for further research to establish how large N=k

must be for this approximation to be reliable.

What obstacles remain to prevent us from evaluating the

local Z

�

M

? We need to evaluate or approximate the inverse

Hessian of M , and we need to evaluate or approximate its

determinant and/or trace [14].

Denker et. al. have already discussed how to approxi-

mate the Hessian of E

D

for the purpose of evaluating weight

2

Bayesian model comparison is performed by evaluating and com-

paring the evidence for alternative models. Gull and Skilling de�ned

the evidence for a model H to be P(DjH). The existence of multiple

minima in neural network parameter space complicates model com-

parison. The quantity in (15) is not P (DjS

w

�
;A;R) (it includes the

prior for S

w

� jA;R), but I have called it the evidence because it is

the quantity we should evaluate to compare alternative solutions with

each other and with other models.
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saliency and for assigning error bars to weights and network

outputs [4, 10]. It can be evaluated in the same way that

backpropagation evaluates rE

D

. Alternatively A can be

evaluated by numerical methods, for example second di�er-

ences. A third option: if variable metric methods are used

to minimise M instead of gradient descent, then the inverse

Hessian is automatically generated during the search for the

minimum. It is important, for the success of this Bayesian

method, that the o�{diagonal terms of the Hessian should

be evaluated. Denker et. al.'s method can do this without

any additional complexity. The diagonal approximation is

no good because of the strong posterior correlations in the

parameters.

4 A Demonstration

This demonstration examines the evidence for various neural

net solutions to a small interpolation problem, the mapping

for a two joint robot arm,

(�

1

; �

2

) ! (y

a

; y

b

) = (r

1

cos �

1

+ r

2

cos(�

1

+ �

2

);

r

1

sin �

1

+ r

2

sin(�

1

+ �

2

)):

For the training set I used r

1

= 2:0 and r

2

= 1:3, regu-

lar samples from a restricted range of (�

1

; �

2

) were made,

and gaussian noise of magnitude 0.05 was added to the out-

puts. The neural nets used had one hidden layer of sigmoid

units and linear output units. During optimisation, the reg-

ulariser (2) was used initially, and an alternative regulariser

is introduced later; � was �xed to its true value (to enable

demonstration of the properties of the quantity ), and �

was allowed to adapt to its locally most probable value.

Figure 1 illustrates the performance of a typical neural

network trained in this way. Each output is accompanied by

error bars evaluated using Denker et. al.'s method, includ-

ing o�{diagonal Hessian terms. If � had not been known

in advance, it could have been inferred from the data using

equation (11). For the solution displayed, the model's esti-

mate of � in fact di�ered negligibly from the true value, so

the displayed error bars are the same as if � had not been

�xed.

Figure 2 shows the data mis�t versus the number of hid-

den units. Notice that, as expected, the data error tends to

decrease monotonically with increasing number of parame-

ters. The data mis�t cannot serve as a criterion for choosing

between solutions.

Figure 3 shows the evidence for about 100 di�erent solu-

tions using di�erent numbers of hidden units. Notice how

the evidence maximum has the characteristic shape of an

`Occam hill' | steep on the side with too few parameters,

and shallow on the side with too many parameters. The

quadratic approximations break down when the number of

parameters becomes too big compared with the number of

data points.

The next �gures introduce the quantity , discussed in

[14], the number of well{measured parameters. In cases

where the evaluation of the evidence proves di�cult, it may

be that  will serve as a useful tool. For example, frequen-

tist theory predicts that the addition of redundant param-

eters to a model should reduce �

2

D

by one unit per well{

measured parameter; a stopping criterion could detect the

point at which, as parameters are deleted, �

2

D

started to

increase faster than with gradient 1 with decreasing  (�g-

ure 5). This use of  requires prior knowledge of the noise

level �; that is why � was �xed to its known value for these

demonstrations.

Now the question is how good a predictor of network qual-

ity the evidence is. The fact that the evidence has a maxi-

mum at a reasonable number of hidden units is promising.

Furthermore, �gure 6 shows that the performance of the

solutions on an unseen test set has similar large scale struc-

ture to the evidence. However, �gure 7 shows the evidence

against the performance on a test set, and it can be seen that

a signi�cant number of solutions with poor evidence actu-

ally perform well on the test set. It is time for a discussion

of the relationship between the evidence and generalisation

ability. We will return later to the failure in �gure 7 and see

that it is recti�ed by the development of new, more probable

regularisers.

Relation to the theory of `generalisation'

What is the relationship between the evidence and the gen-

eralisation error (or its close relative, cross{validation)? A

correlation between the two is certainly expected. But the

evidence is not necessarily a good predictor of generalisation

error (see discussion in [14]). First, as illustrated in �gure

8, the error on a test set is a noisy quantity, and a lot of

data has to be devoted to the test set to get an acceptable

signal to noise ratio. Furthermore, imagine that two models

have generated solutions to an interpolation problem, and

that their two most probable interpolants are completely

identical. In this case, the generalisation error for the two

solutions must be the same, but the evidence will not in

general be the same: typically, the model that was a pri-

ori more complex will su�er a larger Occam factor and will

have smaller evidence. Also, the evidence is a measure of

plausibility of the whole ensemble of networks about the op-

timum, not just the optimal network. Thus there is more to

the evidence than there is to the generalisation error.

What if the Bayesian method fails?

I do not want to dismiss the utility of the generalisation

error: it can be important for detecting failures of the model

being used. For example, if we obtain a poor correlation

between the evidence and the generalisation error, such that

Bayes fails to assign a strong preference to solutions which

actually perform well on test data, then we are able to detect

and attempt to correct such failures.

A failure indicates one of two things, and in either case

we are able to learn and improve: either numerical inac-

curacies in the evaluation of the probabilities caused the

5
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Figure 1: Typical neural network output. (Inset {

training set)

This is the output space (y

a

; y

b

) of the network. The target out-

puts are displayed as small x's, and the output of the network

with 1� error bars is shown as a a dot surrounded by an ellipse.

The network was trained on samples in two regions in the lower

and upper half planes (inset). The outputs illustrated here are

for inputs extending a short distance outside the training re-

gions, and bridging the gap between them. Notice that the error

bars get much larger around the perimeter. They also increase

slightly in the gap between the training regions. These pleas-

ing properties would not have been obtained had the diagonal

Hessian approximation of [4] been used. The above solution was

created by a three layer network with 19 hidden units.
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Figure 2: Data error versus number of hidden units.

Each point represents one converged neural network, trained on

a 200 i/o pair training set. Each neural net was initialised with

di�erent random weights and with di�erent values for the initial

value of �

2

W

= 1=�. The two point{styles correspond to small and

large initial values for �

W

. The error is shown in dimensionless

�

2

units such that the expectation of error relative to the truth

is 400 � 20. The solid line is 400 � k, where k is the number of

free parameters.
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Figure 3: Log Evidence for solutions using the �rst

regulariser.

For each solution, the evidence was evaluated. Notice that an

evidence maximum is achieved by neural network solutions using

10, 11 and 12 hidden units. For more than � 19 hidden units,

the quadratic approximations used to evaluate the evidence are

believed to break down. The number of data points N is 400

(i.e. 200 i/o pairs); c.f. number of parameters in a net with 20

hidden units = 102.
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Figure 4: The number of well{determined parame-

ters.

This �gure displays  as a function of k, for the same network

solutions as in �gure 3.
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Figure 5: Data mis�t versus .

This �gure shows �

2

D

against , and a line of gradient �1. To-

wards the right, the data's mis�t �

2

D

is reduced by 1 for every

well{measured parameter. When the model has too few parame-

ters however (towards the left), the mis�t gets worse at a greater

rate.
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Figure 6: Test error versus number of hidden units

The training set and test set both had 200 data points. The test

error for solutions found using the �rst regulariser is shown in

dimensionless �

2

units such that the expectation of error relative

to the truth is 400 � 20.
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Figure 7: Log Evidence versus Test error for the �rst

regulariser

The desired correlation between the evidence and the test error

has negative slope. A signi�cant number of points on the lower

left violate this desired trend, so we have a failure of Bayesian

prediction. The points which violate the trend are networks in

which there is a signi�cant di�erence in typical weight magnitude

between the two layers. They are all networks whose learning was

initialised with a large value of �

W

. The �rst regulariser is ill{

matched to such networks, and the low evidence is a reection

of this poor prior hypothesis.
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Figure 8: Comparison of two test errors.

This �gure illustrates how noisy a performance measure the test

error is. Each point compares the error of a trained network on

two di�erent test sets. Both test sets consist of 200 data points

from the same distribution as the training set.

failure; or else the alternative hypotheses which were of-

fered to Bayes were a poor selection, ill{matched to the real

world (for example, a poor regulariser). When such a failure

is detected, it prompts us to examine our models and try

to discover the implicit assumptions in the model which the

data didn't agree with; alternative models can be tried until

a hypothesis is found that makes the data more probable.

We have just met exactly such a failure. Let us now estab-

lish what assumption in our model caused this failure and

learn from it. Note that this mechanism for human learn-

ing is not available to those who just use the test error as

their performance criterion. Going by the test error alone,

there would have been no indication that there was a serious

mismatch between the model and the data.

Back to the demonstration: comparing dif-

ferent regularisers

The demonstrations thus far used the regulariser (2). This

is equivalent to a prior that expects all the weights to have

the same characteristic size. This is actually an inconsis-

tent prior: the input and output variables and hidden unit

activities could all be arbitrarily rescaled; if the same map-

ping is to be performed (a simple consistency requirement),

such transformations of the variables would imply indepen-

dent rescaling of the weights to the hidden layer and to the

output layer. Thus the scales of the two layers of weights

are unrelated, and it is inconsistent to force the characteris-

tic decay rates of these di�erent classes of weights to be the

same. This inconsistency is the major cause of the failure il-

lustrated in �gure 7. All the networks deviating substantially

from the desired trend have weights to the output layer far

larger than the weights to the input layer; this poor match

2

1

3

Bias

Bias

Output

layer

Hidden

layer

Input

layer

Figure 9: The three classes of weights under the sec-

ond prior

1: Hidden unit weights. 2: Hidden unit biases. 3: Output unit

weights and biases. The weights in one class c share the same

decay constant �

c

.

to the model implicit in the regulariser causes the evidence

for those solutions to be small.

This failure enables us to progress with insight to new reg-

ularisers. The alternative that I now present is a prior which

is not inconsistent in the way explained above, so there are

theoretical reasons to expect it to be `better'. However, we

will allow the data to choose, by evaluating the evidence for

solutions using the new prior; we will �nd that the new prior

is indeed more probable.

The second prior has three independent regularising con-

stants, corresponding to the characteristic magnitudes of

the weights in three di�erent classes c, namely hidden unit

weights, hidden unit biases, and output weights and biases

(see �gure 9). The term �E

W

is replaced by

P

c

�

c

E

c

W

,

where E

c

W

=

P

i2c

w

2

i

=2. Hinton and Nowlan [7] have used

a similar prior modelling weights as coming from a gaus-

sian mixture, and using Bayesian re{estimation techniques

to update the mixture parameters; they found such a model

was good at discovering elegant solutions to problems with

translation invariances.

Using the second prior, each regularising constant is inde-

pendently adapted to its most probable value by evaluating

the number of well{measured parameters 

c

associated with

each regularising function, and �nding the optimum where

2�

c

E

c

W

= 

c

. The increased complexity of this prior model

is penalised by an Occam factor for each new parameter �

c

(see [14]). Let me preempt questions along the lines of `why

didn't you use four weight classes?' Any other way of assign-

ing weight decays is just another model, and you can try as

many as you like; by evaluating the evidence you can then

�nd out what preference the data have for the alternative

decay schemes.

New solutions have been found using this second prior,

and the evidence evaluated. The evidence for these new

solutions with the new prior is shown in �gure 10. Notice

that the evidence has increased compared to the evidence

for the �rst prior. For some solutions the new prior is more

probable by a factor of 10

30

.

8



www.manaraa.com

360

380

400

420

440

460

480

500

6 8 10 12 14 16 18 20

L
o
g
 
E
v
i
d
e
n
c
e

Number of hidden units

"small-start"
"large-start"

"derived"
"symmetries-detected"

Figure 10: Log Evidence versus number of hidden

units for the second prior

The di�erent point styles correspond to networks with learning

initialised with small and large values of �

W

; networks previously

trained using the �rst regulariser and subsequently trained on the

second regulariser; and networks in which a weight symmetry was

detected (in such cases the evidence evaluation is possibly less

reliable).

Now the crunch: does this more probable model make

good predictions? The evidence for the second prior is

shown against the test error in �gure 11. The correlation be-

tween the two is greatly improved. Notice furthermore that

not only is the second prior more probable, the best test

error achieved by solutions found using the second prior is

slightly better than any achieved using the �rst prior, and

the number of good solutions has increased substantially.

Thus the Bayesian evidence is a good predictor of general-

isation ability, and the Bayesian choice of regularisers has

enabled the best solutions to be found.

5 Discussion

The Bayesian method that has been presented is well{

founded theoretically, and it works practically, though it

remains to be seen how this approach will scale to larger

problems. For a particular data set, the evaluation of the

evidence has led us objectively from an inconsistent regu-

lariser to a more probable one. The evidence is maximised

for a sensible number of hidden units, showing that Occam's

razor has been successfully embodied with no ad hoc terms.

Furthermore the solutions with greatest evidence perform

better on a test set than any other solutions found. I believe

there is currently no other technique that could reliably �nd

and identify better solutions using only the training set. Es-

sential to this success was the simultaneous Bayesian optimi-

sation of the three regularising constants (decay terms) �

c

.

Optimisation of these parameters by any orthodox search

technique such as cross{validation would be laborious; if

360

380

400

420

440

460

480

500

450 500 550 600 650

L
o
g
 
E
v
i
d
e
n
c
e

Test error

"small-start"
"large-start"

"derived"
"symmetries-detected"

Figure 11: Log Evidence for the second prior versus

test error.

The correlation between the evidence and the test error for the

second prior is very good. Note that the largest value of evidence

has increased relative to �gure 7, and the smallest test error has

also decreased.

there were many more than three regularising constants, as

could easily be the case in larger problems, it is hard to

imagine any such search being possible.

This brings up the question of how these Bayesian cal-

culations scale with problem size. In terms of the number

of parameters k, calculation of the determinant and inverse

of the Hessian scales as k

3

. Note that this is a computa-

tion that needs to be carried out only a very small number

of times compared with the immense number of derivative

calculations involved in a typical learning session. However,

for large problems it may be too demanding to evaluate the

determinant of the Hessian. If this is the case, there are nu-

merical methods available to approximate the determinant

or trace of a matrix in k

2

time [19].

Application to classi�cation problems

This paper has thus far discussed the evaluation of the evi-

dence for backprop networks trained on interpolation prob-

lems. Neural networks can also be trained to perform clas-

si�cation tasks. A future publication [15] will demonstrate

that the Bayesian framework for model comparison can be

applied to these problems too.

Relation to V{C dimension

Some papers advocate the use of V{C dimension [1] as a

criterion for penalising over{complex models [2, 11]. V{C

dimension is most often applied to classi�cation problems;

the evidence can be evaluated equally easily for interpolation

and classi�cation problems. V{C dimension is a worst case

measure, so it yields di�erent results from Bayesian anal-

ysis [6]. For example, V{C dimension is indi�erent to the

9
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use of regularisers like (2), and to the value of �, because

the use of such a regulariser does not rule out absolutely

any particular network parameters. Thus V{C dimension

assigns the same complexity to a model whether or not it is

regularised.

3

So it cannot be used to set regularising con-

stants � or to compare alternative regularisers. In contrast,

the preceding demonstrations show that careful objective

choice of regulariser and � is essential for the best solutions

to be obtained.

Worst case analysis has a complementary role alongside

Bayesian methods. Neither can substitute for the other.

Future tasks

The gaussian approximation used to evaluate the evidence

breaks down when the number of data points is small com-

pared to the number of parameters. For the model problems

I have studied so far, the gaussian approximation seemed to

break down signi�cantly for N=k < 3� 1. It is a matter for

further research to characterise this failure and investigate

techniques for improving the evaluation of Z

�

M

, for example

the use of random walks on M in the neighbourhood of a

solution.

It will be interesting to see the results of evaluating the

evidence for some larger real{world network problems.

Appendix: Numerical methods

Quick and dirty version

The three numerical tasks are automatic optimisation of

�

c

and �, calculation of error bars, and evaluation of the

evidence. I will describe a cheap approximation for solv-

ing the �rst of these tasks without evaluating the Hessian.

If we neglect the distinction between well{determined and

poorly{determined parameters, we obtain the following up-

date rules for � and �:

�

c

:= k

c

=2E

c

W

� := N=2E

D

If you want an easy{to{program taste of what a Bayesian

framework can o�er, try using this procedure to update your

decay terms.

Hessian evaluation

The Hessian of M , A, is needed to evaluate  (which relates

to Trace A

�1

), to evaluate the evidence (which relates to

Det A), and to assign error bars to network outputs (using

A

�1

).

I used two methods for evaluating A: an approximate

analytic method and second di�erences. The approximate

3

However, E. Levine (personal communication) has mentioned that

a measure of `e�ective VC dimension' of a regularised model is being

developed. It is speculated that this measure may turn out identical

to , equation (12).

analytic method was, following Denker et. al., to use back-

prop to obtain the second derivatives, neglecting terms in

f

00

, where f is the activation function of a neuron. The Hes-

sian is built up as a sum of outer products of gradient vec-

tors. Unlike Denker et. al., I did not ignore the o�{diagonal

terms; the diagonal approximation is not good enough! For

the evaluation of  the two methods gave similar results,

and either approach seemed satisfactory. However, for the

evaluation of the evidence, the approximate analytic method

failed to give satisfactory results. The `Occam factors' are

very weak, scaling only as logN , and the above approxima-

tion apparently introduces systematic errrors greater than

these. The reason that the evidence evaluation is more sensi-

tive to errors than the  evaluation is because  is related to

the sum of eigenvalues, whereas the evidence is related to the

product; errors in small eigenvalues jeopardise the product

more than the sum. I expect an exact analytic evaluation

of the second derivatives would resolve this. To save pro-

gramming e�ort I instead used second di�erences, which is

computationally more demanding (� kN backprops) than

the analytic approach (� N backprops). There were still

problems with errors in small eigenvalues, but it was possi-

ble to correct these errors, by detecting eigenvalues which

were smaller than theoretically permitted.

Demonstrations

The demonstrations were performed as follows:

Initial weight con�guration: random weights drawn from a

gaussian with �

W

= 0:3.

Optimisation algorithm forM (w): variable metric methods,

using code from [16], used several times in sequence with

values of the fractional tolerance decreasing from 10

�4

to

10

�8

. Every other loop, the regularising constants �

c

were

allowed to adapt in accordance with the re{estimation:

�

c

:= 

c

=2E

c

W

(17)

Precaution

When evaluating the evidence, care must be taken to verify

that the permutation term g is appropriately set. It may be

the case (probably mainly in toy problems) that the regu-

lariser makes two or more hidden units in a network adopt

identical connection values; alternatively some hidden units

may switch o�, with all weights set to zero; in these cases

the permutation term should be smaller. Also in these cases,

it is likely that the quadratic approximation will perform

badly (quartic rather than quadratic minima are likely), so

it is preferable to automate the deletion of such redundant

units.
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